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Abstract—4-Substituted thiosemicarbazides react with di- and trifluoroacetic acids to give the corresponding 
3-fluoroalkyl-4,5-dihydro-1,2,4-triazole-5(1H)-thiones. Condensation of 4,4-disubstituted thiosemicarbazides 
with trifluoroacetic acid leads to formation of 2-amino-5-trifluoromethyl-1,3,4-thiadiazoles.  

Ambident properties of thioamides, thiohydrazides, 
and thiosemicarbazides as N,S-difunctional nucleo-
philes have been well documented and utilized in the 
synthesis of various heterocyclic compounds, such as 
thiazoles, pyrazoles, thiadiazoles, triazoles, thiadi-
azines, triazines, etc. [1–5]. Condensation of thiosemi-
carbazides with carboxylic acids could lead to forma-
tion of both thiadiazoles III and dihydrotriazolethiones 
IV [6–8]. Interest in these compounds originates from 
the fact that 1,3,4-thiadiazole and 1,2,4-triazole deriva-
tives exhibit various kinds of biological activity, in-
cluding antiphlogistic, analgetic, antiviral, and antibac-
terial [8]. One of the most effective ways of enhancing 
biological activity of chemical compounds and/or ex-
tending its range is introduction of di- or trifluoro-
methyl substituents into their molecules, for fluorine 
atoms and fluoroalkyl groups are characterized by  
an unusual combination of electronic and steric prop-
erties. In addition, the presence of fluorine atoms 
increases the ability of compounds to penetrate cell 
membranes due to improved solubility in lipids [9–11]. 

There are very limited published data on fluorine-
containing thiadiazoles and dihydrotriazolethiones. For 
example, condensation products of nonfluorinated 
thiosemicarbazides with a series of polyfluorinated 
acid fluorides [12] and of 2,4-disubstituted thiosemi-
carbazides with trifluoroacetic anhydride [13] were 

assigned the structure of polyfluorinated 4,5-dihydro-
1,2,4-triazole-5(1H)-thiones. However, no rigorous 
proofs for the assumed structures were given. Ashton 
et al. [7, 8] described reactions of 2-methyl-, 4-(2-pyr-
idyl)-, and 4-(4-nitrobenzyl)thiosemicarbazides with 
trifluoroacetic acid. The authors believed that the prod-
ucts were the corresponding dihydrotriazolethiones IV,
but the 1H NMR and mass spectra given therein could 
equally belong to dihydrotriazolethiones IV and thiadi-
azoles III.

In the present work we examined reactions of di- 
and trifluoroacetic acids with morpholine-4-carbothio-
hydrazide (Ia), piperidine-1-carbothiohydrazide (Ib), 
pyrrolidine-1-carbothiohydrazide (Ic), 4-arylthiosemi-
carbazides Id–Ig, and 4-piperidinothiosemicarbazide 
(Ih). Hydrazides Ia–Ic may be regarded as 4,4-disub-
stituted thiosemicarbazides. The reactions successfully 
occurred in excess difluoro- or trifluoroacetic acid. The 
condensation of thiosemicarbazides Ia–Ic with tri-
fluoroacetic acid afforded exclusively thiadiazoles 
IIIa–IIIc (Scheme 1) whose structure was confirmed 
by the data of elemental analysis, gas chromatog-
raphy–mass spectrometry, and 1H, 19F, and 13C NMR 
spectroscopy. Compounds IIIa–IIIc characteristically 
showed in the 19F NMR spectra a singlet at F 102 ppm 
from the trifluoromethyl group. Thiadiazoles IIIa–IIIc
can be used as model compounds to distinguish be-
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R2N = morpholino (a), piperidino (b), 1-pyrrolidinyl (c).
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Scheme 2. 

Id, IIIe, IVa, IVe, R = Ph; Ie, IVc, R = 4-MeC6H4; If, IIIf, IVb, R = 3,4-(MeO)2C6H3; Ig, IIIe, IVd, R = 4-FC6H4;
Ih, IVf, R = piperidino; IIa, IIIf, IVa, IVb, RF = HCF2; IIb, IIId, IIIe, IVc–IVf, RF = CF3.

tween dihydrotriazolethione and thiadiazole structures 
III and IV of the products obtained by condensation of 
4-substituted thiosemicarbazides Id–Ih with fluorocar-
boxylic acids. 

Under analogous conditions, from thiosemicarba-
zides Id–Ih and fluoroacetic acid IIa and IIb we 
obtained the corresponding 4,5-dihydro-1,2,4-triazole-
5(1H)-thiones IVa–IVf as the major products. Thiadi-
azoles IIId–IIIf were formed as by-products (3 to 9%) 
in the condensations of thiosemicarbazides Id–If with 
difluoro- and trifluoroacetic acids (Scheme 2). Com-
pounds IIId and IIIe were identified by the 19F NMR 
spectra which contained a singlet at F 102 ppm in 
addition to the signal at F ~98 ppm from the CF3

group of dihydrotriazolethiones IVd and IVe. Com-
pound IVb showed in the 19F NMR spectrum a doublet 
at F 44.49 ppm from the HCF2 group and a doublet at 

F 47.10 ppm, the latter belonging to thiadiazole IIIf.
According to the GC–MS data, the condensation of 

thiosemicarbazide Id with trifluoroacetic acid gives 
two products, dihydrotriazolethione IVe (major peak 
with a retention time of 15.00 min) and thiadiazole 
IIIe (minor peak; retention time 15.14 min). The mass 
spectra of both products contain ion peaks with  
m/z 246 [M + H]+, 245 [M]+, and 244 [M – H]+, as well 
as fragment ion peaks with m/z 176 [M – CF3]

+, 168 
[M – Ph]+, 150 [M – CF3 – CN]+, 77 [Ph]+, and 69 
[CF3]. Unlike compound IVe, thiadiazole IIIe gives 

rise to much more abundant fragment ion with m/z 150 
(Irel 42% against 3% for IVe); this ion is likely to  
be formed by elimination of CF3 and CN from the 
molecular ion. 

Thus 4-substituted thiosemicarbazides exhibit am-
bident properties in the condensation with di- and tri-
fluoroacetic acids. The described reactions provide  
a convenient synthetic route to 3-difluoromethyl- and 
3-trifluoromethyl-4,5-dihydro-1,2,4-triazole-5(1H)-
thiones IV. Isomeric heterocyclic systems, thiadiazoles 
III, are formed as by-products (3–9%). 

EXPERIMENTAL 

The 1H, 19F, and 13C NMR spectra were recorded 
from solutions in CDCl3 on Tesla BS-567A (80 MHz 
for 1H and 75 Hz for 19F) and Bruker DRX-400 spec-
trometers (400 MHz for 1H, 376 MHz for 19F, and  
100 MHz for 13C); the chemical shifts were measured 
relative to tetramethylsilane (1H and 13C) and hexa-
fluorobenzene (19F) as internal references. The IR 
spectra were obtained on a Perkin–Elmer Spectrum I 
instrument from samples dispersed in mineral oil. Gas 
chromatography–mass spectrometry was performed on 
a Varian Saturn 2100T GC/MS system (GC 3900);  
VF-5ms capillary column, 30 m×0.25 mm; carrier gas 
helium, flow rate 1 ml/min; oven temperature prog-
ramming from 40°C (3 min) to 200°C at a rate of  
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20 deg/min. Thiosemicarbazides Ia–Ih were synthe-
sized by the procedure reported in [14]. 

General procedure for condensation of thiosemi-
carbazides with di- and trifluoroacetic acids. Di- or 
trifluoroacetic acid, 0.04 mol, was added dropwise 
under stirring to 0.02 mol of thiosemicarbazide Ia–Ih,
and the mixture was heated for 8 h under reflux. The 
mixture was poured into water, and the precipitate was 
filtered off and recrystallized from water or hexane–
chloroform (3:1).

2-Morpholino-5-trifluoromethyl-1,3,4-thiadi-
azole (IIIa). Yield 84%. Colorless crystals, mp 94– 
95°C (from water). IR spectrum, , cm–1: 1464 (C=N); 
1135, 1114, 1026 (C–F). 1H NMR spectrum, , ppm: 
3.61 t (4H, CH2O, 2JCH = 5.1 Hz), 3.85 t (4H, CH2N,
2JCH = 5.1 Hz). 19F NMR spectrum: F 102.23 ppm, s 
(CF3). 

13C NMR spectrum, C, ppm: 49.88 s (CNC), 
65.80 s (COC), 119.38 q (CF3,

1JCF = 271.8 Hz), 
146.36 q (C5, 2JCF = 39.2 Hz), 174.13 s (C2). Mass 
spectrum, m/z (Irel, %): 240 (100) [M]+, 86 (11), 84 
(14), 69 (36). Found, %: C 35.17; H 3.34; F 23.80;  
N 17.78; S 13.56. C7H8F3N3SO. Calculated, %:
C 35.15; H 3.37; F 23.83; N 17.57; S 13.40.  

2-Piperidino-5-trifluoromethyl-1,3,4-thiadiazole 
(IIIb). Yield 32.8%. Yellow crystals, mp 37–38°C 
(from hexane–chloroform, 3:1). IR spectrum, , cm–1:
1464 (C=N); 1182, 1139, 1030 (C–F). 1H NMR spec-
trum, , ppm: 1.73 m (6H, CH2), 3.58 m (4H, NCH2). 
19F NMR spectrum: F 102.21 ppm, s (CF3).

13C NMR 
spectrum, C, ppm: 23.90 s, 24.99 s, 51.42 s (CH2); 
119.60 q (CF3,

1JCF = 271.4 Hz); 145.37 q (C5, 2JCF = 
38.8 Hz), 174.01 s (C2). Found, %: C 40.54; H 3.34;  
F 23.92; N 17.75. C8H10F3N3S. Calculated, %: C 40.50; 
H 4.25; F 24.02; N 17.71. 

2-(1-Pyrrolidinyl)-5-trifluoromethyl-1,3,4-thiadi-
azole (IIIc). Yield 35.8%. Yellow crystals, mp 68– 
69°C (from hexane–chloroform, 3:1). IR spectrum, ,
cm–1: 1478 (C=N); 1182, 1134, 1094, 1030 (C–F).  
1H NMR spectrum, , ppm: 2.12 m (4H, CH2), 3.56 m 
(4H, NCH2). 

19F NMR spectrum: F 102.40 ppm, s 
(CF3).

13C NMR spectrum, C, ppm: 25.72 s, 51.02 s 
(CH2); 119.56 q (CF3,

1JCF = 271.2 Hz); 144.48 q (C5,
2JCF = 38.9 Hz); 169.91 s (C2). Found, %: C 37.55;  
H 3.80; N 18.75; S 14.32. C7H8F3N3S. Calculated, %: 
C 37.67; H 3.61; N 18.82, S 14.36. 

3-Difluoromethyl-4-phenyl-4,5-dihydro-1,2,4-tri-
azole-5(1H)-thione (IVa). Yield 45%. Yellow crystals, 
mp 198–199°C (from hexane–chloroform, 1 : 3). IR 
spectrum, , cm–1: 3088, 3039, 2744 (NH); 1594 
(C=N); 1126, 1077, 1056 (C–F). 1H NMR spectrum, ,

ppm: 6.53 t (1H, HCF2,
2JCF = 51.5 Hz), 7.39–7.61 m 

(5H, C6H5), 11.96 br.s (1H, NH). 19F NMR spectrum: 
F 44.76 ppm, d (HCF2, 2JFH = 51.5 Hz). Found,  

%: C 47.30; H 2.88; F 16.72; N 18.61; S 14.08. 
C9H7F2N3S. Calculated, %: C 47.57; H 3.11; F 16.72; 
N 18.49; S 14.11. 

3-Difluoromethyl-4-(3,4-dimethoxyphenyl)-4,5-
dihydro-1,2,4-triazole-5(1H)-thione (IVb) and  
5-difluoromethyl-2-(3,4-dimethoxyphenylamino)-
1,3,4-thiadiazole (IIIf). Yield 35%. Yellow crystals, 
mp 215–216°C (from hexane–chloroform, 1:3). IR 
spectrum, , cm–1: 3090, 3040, 2750 (NH); 1590 
(C=N); 1170, 1130, 1050 (C–F). 1H NMR spectrum 
(DMSO-d6), , ppm: 3.90 s (3H, OCH3), 3.95 s (3H, 
OCH3), 6.51 t (1H, HCF2,

2JCF = 51 Hz), 6.68–7.26 m 
(3H, C6H3), 11.54 br.s (1H, NH). 19F NMR spectrum, 

F, ppm: IVb: 44.09 d (HCF2,
2JFH = 51.3 Hz); IIIf:

47.09 d (HCF2,
2JFH = 51.9 Hz); signal intensity ratio 

IVb:IIIf  10:1. Found, %: C 45.64; H 3.64; F 12.72; 
N 14.25; S 11.28. C11H11F2N3O2S. Calculated, %:  
C 45.99; H 3.86; F 13.23; N 14.63; S 11.16. 

4-(4-Methylphenyl)-3-trifluoromethyl-4,5-di-
hydro-1,2,4-triazole-5(1H)-thione (IVc). Yield 55%. 
Yellow crystals, mp 141–143°C (from hexane–chloro-
form, 1:3). IR spectrum, , cm–1: 3034, 2742 (NH); 
1606 (C=N); 1220, 1179, 1156 (C–F). 1H NMR spec-
trum (DMSO-d6), , ppm: 2.65 s (3H, CH3), 7.09– 
7.48 m (4H, C6H4), 10.53 br.s (1H, NH). 19F NMR 
spectrum (CDCl3–C6F6): F 99.91 ppm, s (CF3). Found, 
%: C 46.50; H 3.20; F 21.54; N 16.11; S 12.30. 
C10H8F3N3S. Calculated, %: C 46.33; H 3.11; F 21.98; 
N 16.21; S 12.37. 

4-(4-Fluorophenyl)-3-trifluoromethyl-4,5-di-
hydro-1,2,4-triazole-5(1H)-thione (IVd) and  
2-(4-fluorophenylamino)-5-trifluoromethyl-1,3,4-
thiadiazole (IIId). Yield 88%. Colorless crystals,  
mp 139–140°C (from water). IR spectrum, , cm–1:
3083, 3039, 2747 (NH); 1599 (C=N); 1276, 1197, 
1164 (C–F). 1H NMR spectrum, , ppm: 7.26–7.38 m 
(4H, C6H4F), 12.50 br.s (1H, NH). 19F NMR spectrum, 

F, ppm: IVd: 53.61 s (1F, 4-FC6H4), 98.31 s (3F, CF3); 
IIId: 102.14 s (3F, CF3), 47.04 s (1F, 4-FC6H4); signal 
intensity ratio IVd:IIId  10:1. Found, %: C 41.10;  
H 2.00; N 16.01; S 12.25. C9H5F4N3S. Calculated, %: 
C 41.07; H 1.91; N 15.96; S 12.18. 

4-Phenyl-3-trifluoromethyl-4,5-dihydro-1,2,4-tri-
azole-5(1H)-thione (IVe) and 2-phenylamino-5-tri-
fluoromethyl-1,3,4-thiadiazole (IIIe). Yield 70%. 
Yellow crystals, mp 153–154°C (from chloroform). IR 
spectrum, , cm–1: 3071, 3032, 2743 (N–H); 1618 
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(C=N); 1251, 1176, 1150 (C–F). 1H NMR spectrum, ,
ppm: 7.25–7.61 m (5H, C6H5), 11.00 br.s (1H, NH). 
19F NMR spectrum, F, ppm: IVe: 98.34 s (CF3); IIIe:
102.17 s (CF3); signal intensity ratio IVe:IIIe  30:1.
13C NMR spectrum, C, ppm: 116.52 q (CF3,

1JCF = 
271.8 Hz); 127.83 s, 130.04 s, 130.98 s, 131.92 s 
(Carom); 141.67 q (C3, 2JCF = 41.4 Hz); 171.28 s (C5). 
Mass spectrum, m/z (Irel, %): IVe: 246 (100) [M + H]+,
245 (36) [M]+, 244 (64), 150 (3), 77 (16), 69 (13); IIIe:
246 (41) [M + H]+, 245 (100) [M]+, 244 (69), 150 (42), 
92 (4), 77 (38), 69 (31). Found, %: C 44.08; H 2.25;  
F 23.19; N 17.23; S 13.12. C9H6F3N3S. Calculated, %: 
C 44.08; H 2.47; F 23.24; N 17.14; S 13.07. 

4-Piperidino-3-trifluoromethyl-4,5-dihydro-
1,2,4-triazole-5(1H)-thione (IVf). Yield 50%. Yellow 
crystals, mp 155–156°C (from hexane–chloroform, 
1:3). IR spectrum, , cm–1: 3060, 3100, 2740 (NH); 
1598 (C=N); 1219, 1160, 1155 (C–F). 1H NMR spec-
trum, , ppm: 1.48–1.74 m (10H, CH2), 8.25 br.s (1H, 
NH). 19F NMR spectrum: F 101.88 ppm, s (CF3). 
Found, %: C 38.56; H 4.01; F 22.62; N 22.23. 
C8H11F3N4S. Calculated, %: C 38.09; H 4.40; F 22.59; 
N 22.21.

This study was performed under financial support 
by the State Program “Leading Scientific Schools”  
(project no. NSh 1766.2003.03). 
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